Medicines partnership of australia
Medicines Partnership of Australia
Packaging and labelling of pharmaceuticals and consumer safety – a survey
of the literature
Elizabeth de Somer, Ivan Trofimov
Medicines Australia Ltd
Introduction
Inadequate and ambiguous packaging and label ing of medications is widely perceived as a
problem requiring an urgent policy response, and also as a major contributing factor to
medication errors. In the Australian context the issue has been raised by multiple
stakeholders, including the Consumers Health Forum of Australia, the Western Australia
Consumers Health Forum, the Australian Commission on Safety and Quality in Health Care,
pharmacists and health professionals, as well as by a broader public (ABC Radio, 2009).
This review is an attempt to examine the concerns of the above mentioned stakeholders
and, specifical y, to provide factual evidence on the magnitude of the problem – the costs
that it poses to the health system, the preponderance of incidents related to
labelling/packaging within a broader class of medication errors, and the nature of these
incidents in community and hospital pharmacy relevant to the Australian setting. This study
also attempts to document the majority of cases, when the labelling/packaging problem is
al egedly attributed to faults in the manufacturing process by the pharmaceutical
We aim to support the consensus view in the medical profession (Aronson, 2009, p. 514)
that the issue of inadequate label ing/packaging is a multi-factorial problem, present at all
stages of the pharmaceutical supply chain (manufacturing, at the point of drug prescription
by a physician, at the pharmacy level, as well as during actual administration of the drug by
a health worker and consumption by the consumer/patient).
Medication errors, adverse drug events and packaging and label ing problem: incidence
and costs
Available data indicates the high occurrence and economic costs of medication errors and
adverse drug events/ADE (the former defined as any preventable events that may lead to
The members of the MPA are Medicines Australia, the Australian Self-Medication Industry, the
National Pharmaceutical Services Association, The Pharmacy Guild of Australia, the Pharmaceutical
Society of Australia and the Generic Medicines Industry Association
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
inappropriate medication use or inflict harm to the patient/consumer; the latter as actual
medication-related incidents that caused patient harm).
In the US hospital setting, the report commissioned for the Institute of Medicine (IoM)
estimates the frequency of medication errors to stand at one error per hospital patient per
day (Kohn, 1999). In the community and outpatient setting, the study by Flynn et al (2003)
estimates the number of medication errors to be 50 million per year (out of 3 billion
prescriptions dispensed in the US community pharmacies annually). As to adverse drug
events, the IoM indicates 1.5 mil ion events (400 000 in hospitals, 800 000 in long-term care
settings and at least 530 000 in outpatient clinics), including between 44 000 to 98 000
eventuating in patients' death. The aggregate costs of the events are estimated at US$3.5
bil ion, not taking into account the losses in wages and productivity. The frequency of ADEs,
stemming from prescription failures in community pharmacies are believed to be lower (50
000 or 0.1% of all medication errors according to Flynn et al), though this number is likely to
be a serious underestimate.
The fragmented evidence in Australia suggests that medication errors and adverse drug
events were equally widespread. The study of general practice by Miller et al (2006)
indicates that almost 2 million people experience ADEs annually (10.4% of all visits to
general practitioners), with almost 138 000 ADEs requiring hospitalisation. This is consistent
with the estimates by the Australian Commission for Safety and Quality in Heath Care,
reporting 190 000 medication-related hospital admissions (ACSQHC, 2002). It should be
stressed however that the magnitude of medication errors and ADEs is much higher for
persons considered at risk of medication misadventure (e.g. taking multiple medications,
having compliance difficulties, living alone etc). In a survey of 1000 such persons, Roughead
et al (2004) report medication errors identified in 90.2% of persons. As to the acute care
and hospital settings, the incident reporting systems in South Australia, Western Australia
and NSW indicate respectively 26.5%, 24.4% and 14.1% medication-related incidents, with
ADEs ranging from 15% of all incidents in Western Australia to 31% in South Australia
(Roughead, Semple, 2009, p. 5).
Regarding the economic burden imposed by ADEs in Australia, the Australian Institute of
Health and Welfare estimates ADEs to cost AU$380 million to the public hospital system
alone (AIHW, 2002). Thornton et al (1999), extrapolating the average cost of an ADE in the
US (US$4555) to Australia argues ADE-related hospital admissions to be in a AU$350-
AU$500 million range. Roughead and Semple (2009, p. 10) estimate ADEs to cost AU$660
The precise costs of ADEs related to inappropriate packaging and labelling of drugs are
unknown. However, taking into account the results of the US Pharmacopeia Medical Error
Reporting Program, attributing 33% of medication errors to labelling and packaging issues,
the costs of packaging/labelling related ADEs may amount to as much as US$1.16 billion
(USP, 1998). It should be mentioned, however, that not all medication errors contribute
equal y to the total cost, with their significance to the health system, and economy, varying
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
The incidence of label ing and packaging problems in pharmacies
Community pharmacies
The US National Medication Error Reporting Program, administered by the US
Pharmacopeial Convention and the Institute for Safe Medication Practices similarly
indicates the high frequency of labelling/packaging problems (Edgar et al, 1994). Of 568
actual and potential medication errors reported to the database (mostly by community
pharmacists) between August 1991 and April 1993, 300 (or 53%) were caused by product
problems (a term which includes inadequate labelling by manufacturer). However, when
fatalities and ADEs were concerned the principal factor was a cognitive error on the part of
a health care practitioner (20 of 43 fatal incidents, or 47%), fol owed by a drug overdose
(47%). Product problems were responsible for 12 fatalities (12 of 43 fatal incidents, or
In the UK, a study (Franklin, O'Grady, 2007) of dispensing practices in 11 community
pharmacies using different systems of authentication at the point of dispensing (stand-
alone; linked to patient medication records /PMR; and linked to electronic transfer of
prescriptions/ETP) revealed 46 labelling errors out of 2859 dispensed items (1.6%).
Evaluated ex post, the majority of errors were of minor clinical significance and were not
life threatening. As to the method of dispensing, it was found that an ETP-linked system
would prevent nearly half of all labelling errors, whereas a stand-alone system would hardly
Another UK study (Ashcroft et al, 2005) analysed dispensing practices and processes in 35
community pharmacies (9 independent stores and 26 chain pharmacies) over a 4-week
period. Of 125 395 prescribed items dispensed, 330 incidents were recorded: selection
errors were the most common type of incidents (199 or 60.3% of all cases), followed by
labelling (109 or 33%) and bagging errors (22 or 6.6%).
In the Australian setting, a collaborative project between Monash, Sydney Universities and
the University of South Australia examined the incidence of dispensing errors in Australian
community pharmacies. In a pilot study conducted over a three month period and
comprising 31 pharmacies over three states (Victoria, NSW and South Australia), 244 near-
misses were detected (i.e. dispensing mistakes that were detected before actual error
occurred and reached the patient), 22 of them (9%) were attributed to the inadequate
labelling of the product, whereas the majority of near-misses involved the failure to
1 Profs. Roger Nation, Michael Dooley, Drs. David Kong, Jil Beattie and Ms. Barbara Dixon from Monash
University; Prof. Andrew McLachlan, Drs. Romano Fois and Tim Chen and Ms. Wedyan Meshreky from Sydney
University; Ms. Naomi Burgess and Ms. Sophie Robinson from the University of South Australia. The results
are published in The Australian Journal of Pharmacy 2010; Vol. 91, p. 27.
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
manage the pharmacy computer system (98), and make the right decision about drug
Hospital pharmacies
The studies of medication errors, in the hospital setting, report cases of label ing problems
due to inadequate manufacturing, and due to over-stickering by hospital pharmacists.
In the UK, a study of frequency and causes of dispensing errors in a hospital pharmacy
(Beso et al, 2005) reveals that of 4849 items dispensed in a large NHS Trust hospital over a
two week period 104 items contained a total of 130 dispensing errors (2.15% of all items).
In total, 60 errors (45% of all errors) were related to over-stickering by the hospital
pharmacy (inscription of incorrect dosage, patient name, instructions and warnings). When
it comes to labelling faults by the manufacturer, 70 errors (54% of all errors) were classified
as content errors, including 11 cases (8.5%), when the incorrect drug was dispensed. While
not stated explicitly, this latter error may be attributed to a certain extent to inadequate
labelling/packaging by the manufacturer. Other content errors (e.g. dispensing the wrong
amount of the correct drug) can also be interpreted this way.
In Australia, medication-related incidents occurring in public hospitals are reported by the
Australian Incidents Monitoring System (AIMS), receiving information from public hospitals
in all states and territories, except Queensland, Tasmania and certain hospitals in NSW and
Victoria. By mid-2002, 7155 medication-related incidents were reported. 2% of al cases
were attributed to incorrect labelling by the manufacturer, while wrong dosage (35.5%) and
the dispensing of the wrong medicine (9.8%) were attributed to the over-stickering and
irregularities in hospital pharmacies (ACSQHC, 2002).
Interpretation of results
Overall, the studies demonstrate a wide dispersion of medication errors and ADEs
(including those, attributed to inadequate labelling). Such ambiguous results can be
explained by the inherent difficulty or even impossibility of obtaining precise figures. Firstly,
the usual sample size of any of the above-mentioned studies is obviously insufficient to
extrapolate findings and obtain health system-wide estimates of the problem. Secondly,
the studies rely on human observers, who might have failed to detect a true number of
dispensing errors; who were aware of the ongoing studies and hence could change their
behaviour; and who frequently found themselves in an institutional environment that
provides disincentives to report all medication-related incidents. Finally and importantly,
the combination of multiple factors leading to medication and label ing errors mean that
any estimate wil be unique to the specific community and hospital pharmacy setting.
It should be stressed, however, that even a low medication error rate translates into a large
aggregate number of errors, given the high volume of medications dispensed in hospital
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
and community pharmacies. Thus, even a small rate (e.g. 1.6%) may have a great
significance for the health system and country-wide patient safety.
The nature and manifestations of packaging and label ing problem
Packaging and labelling failures and the manufacturing process
The instances when flawed manufacturing practices give rise to medication errors are
numerous and can be broadly classified into three groups – confusing drug naming
practices (look-alike-sound-alike names, umbrella branding); inappropriate packaging
practices (the packaging of medications in a format usual y reserved for another type of
medication, the packaging of medications in a same way as promotional materials and
advertisements); and ambiguous and confusing label and package designs. Regarding the
latter, several types of manufacturing faults are identified:
1). Ambiguous indication of dosages on the label. Institute for Safe Medical Practices
reports an accidental administration of 31g. of Timentin, which caused a fatality. The
medical worker confused 31g. and 3.1g dosage that was not indicated prominently on the
label (ISMP, 2002a). A similar case of inadequate spacing between the medication name
and the dosage was reported: Tegretol 300mg. has been interpreted as Tegretol 1300mg,
resulting in under-dosing, since the package was thought to hold ten times more than it
actually did (ISMP, 2002b).
2). Look-alike label and package. Cohen reports confusion caused by the similar label and
package design of imipramine 10mg. and hydrallazine 10mg. In the case of 5% dextrose and
15% potassium hydrochloride, the package and label similarity was combined with a small
font of the drug name and text, making the label illegible.
3). Inadequate label ing of blister strips. On some products, the product name and strength
appear only once or randomly over the blister strip (rather than on every pocket of the
4). Inappropriate use of symbols on the label. In several instances the Roman numeral four
(IV) was misinterpreted as "intravenously". In the case of intravenous (rather than
subcutaneous) insulin injection, such labelling could be fatal (Cohen, p.132). Similarly, the
symbol IV, standing for schedule 4 control ed substances (narcotics), was confused with
intravenous mode of administration. Also, ambiguous symbols, such as a slash through a
circle depicting a pregnant woman (the symbol for a teratogenic drug) led a female patient
to misinterpret the drug as a birth control pil .
5). Lack of standardised terminology on the label. Cohen (ibid, p. 133) reports the
interchangeable use of "single dose" and "single use" indications on the label. In many
cases, the "single dose" indication on the vial led a medical worker to give the entire
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
contents as a single dose (15 ml. of potassium phosphates instead of correct dose of 1ml).
Of particular confusion are multiple unit-of-measure designations, used for certain drugs,
e.g. percent (%), milligram (mg), gram (g), millilitre (mL.), milliequivalent (mEq), and
milliosmole (mOsm) for magnesium sulphate, making it difficult to recognise excessive
6). Lack of contrast in label ing. Several issues are mentioned (Cohen, ibid, p. 125) – the use
of ceramic print on clear glass, which has no contrasting background; labelling on
aluminium foil-wrapped unit dose products that can be difficult to read because of
shininess; the labelling of low-density polyethylene ampoules, with drug information
embossed into the plastic in transparent, raised letters, which are almost impossible to
read; typing drug information on the carton prone to fading.
7). A combination of ambiguous packaging and label ing. This reports the case of
valaciclovir (Zelitrex 500), the drug used for the prophylaxis of Herpes zoster infection. The
tablets are packed in sets of two tablets per blister with the print on the blister ‘Zelitrex
500', making it unclear whether a tablet contains 250 or 500 milligrams (or even
micrograms) of valaciclovir (Guchelaar et al, 2004).
8). Identical packages and colouring schemes, coupled with ambiguous or look-alike names.
There was confusion with Bausch and Lomb's generic versions of two ophthalmic
ointments. The names were cumbersome and differed only in the third ingredient
(Neomycin/polymyxin B sulphates/bacitracin zinc versus Neomycin/polymyxin B
sulphates/dexamethasone), whereas the colouring and company logos were similar (US
Pharmacopeia, 2002).
Labelling failures at the pharmacy level
It is worth noting that variability and confusion of labels and packages is not a problem that
is unique to manufacturers. The recent study of pharmacy over-stickering (Shrank et al,
2007) revealed that labels were not designed to optimise patient understanding of
medication directions and warnings. The largest item on nearly all of the labels was the
pharmacy logo. The average font size was also largest for the pharmacy logo, followed by
medication instructions, and drug name. Auxilliary instruction and warning stickers
averaged a much smaller font size (6.5 point), too small for many older patients to see
without magnification. Also, the labels items that were emphasised were useful to identify
the pharmacy and to promote the practice of the pharmacist, but not to help patients
safely and appropriately administer medication.
2 Data were gathered from identical y written prescriptions fil ed for four commonly prescribed drugs
(atorvastatin, alendronate, trimethoprim-sulfamethoxazole and ibuprofen) in 6 different pharmacies in four
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
Substantial variability has also been seen in the content of the labels, especially on whether
or not the warning/instruction stickers were used. Shrank et al (ibid) states that on
between 8% and 25% of containers no warning and instruction stickers were attached by
the pharmacist. The variability in the content of stickers was also substantial – few
necessary warnings were present on more than half of all stickers. For atorvastatin, only
42% of stickers included a warning about pregnancy, and less than 20% included directions
about taking with food, about fol owing directions precisely, and about checking with
physician before starting other medications. The warnings concerning drug interactions
were present on less than a third of stickers.
The pharmacies have also been responsible for confusing and highly variable translation of
physician's medication instructions, thereby adding to the ambiguous label content. Wolf et
al (2009) investigated how dosage instructions (frequently written in Latin) were
interpreted by pharmacists. Among 85 stickers evaluated, dose frequency was omitted on
6% of sticker instructions, while administration timing was mentioned on only 2% of all
stickers. For some drugs (alendronate), vital instructions were absent on more than 50% of
Possible remedies to the problem
Academic advice
The standard setting and regulation of poor packaging and labelling has to address multiple
problems, stemming from inadequate labelling by manufactures and inappropriate over-
stickering by the pharmacist. Some problems have been directed at the lack of prominent
placement of the drug name and strength, the small size and poor readability of printed
information, insufficient prominence given to route of administration, poor use of colour to
differentiate products or to highlight important information, prominence of company logos
relative to other important information about the product, and inadequate warnings about
proper drug use. Due to the space constraints on the label, remedying these shortcomings
becomes a major technical challenge.
The academic literature suggests two standard setting and regulatory alternatives.
The first specifically concerns the label/instruction design by the drug manufacturer. It
attempts to rectify the health literacy and space constraints by means of pictorial aids and
indications on the drug label and/or pictorial aids on patient information leaflets and
inserts. This approach, recommended by the US National Quality Forum (NQF, 2005) and
the US Surgeon General (Carmona, 2003) is based on the casual observation that the small
print size that appears on many product labels necessitates a high visual acuity of at least
20/50, and a quite advanced level of health and general literacy. As these two conditions
3 While a health literacy problem is a topic that warrants separate investigation, it is worthwhile to point to
several facts of profound importance to pharmaceutical industry and to the health sector in general. The
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
frequently do not hold (specifically in the cases of the elderly, the individuals with
unsatisfactory reading and comprehension ability, and the non-native speakers), and as the
broken link between manufacturers, physicians, pharmacists and patients gives patients
unacceptable room for interpretation of drug information, more user-friendly standards are
required. There is overwhelming evidence from psychology and health literacy research
that pictorial aids improve recall, comprehension and adherence by patients/consumers.
Dowse et al (2005), Mansoor et al (2003) and McKenzie (2010) examined the positive
effects of pictogram-containing labels, particularly for the above-mentioned consumers and
patients. It was also found that pictorial aids were more effective in the labelling of over-
the-counter rather than prescription medicines, as the latter tend to include more technical
and scientific information that is not always amenable to graphic representation (McKenzie,
ibid). Regarding the best use of pictorial aids in labels and medication instructions, there is
agreement that the combination of textual and pictorial instructions is more effective than
using one format alone (Sansgiry et al, 1997; Sojourner, Wogalter, 1998). As to the complex
matter of instructions comprehension, it has been proven that any combination of the text
and pictures should preferably be accompanied by verbal counselling (Morrow et al, 1996).
Hence, even if the label and product information is made user-friendly, closer interaction
between physician, pharmacist and patient will still be required to further prevent
medication errors. Finally, consensus is reached regarding the content of a pictorial aid – it
is found essential to use simple, realistic pictures that convey clear, singular meaning; to
apply realistic colours and draw images to scale; and to maintain an uncluttered
background to retain focus on the pictorial message (Dowse et al, ibid).
The second regulatory alternative deals with over-stickering by pharmacists and unclear
prescriptions by the physicians. The essence of the "evidence-based" approach is that it is
possible to detail best practices for improving dosage/usage instructions by the prescribing
physician and for the format and content of prescription medication container labels
designed by the dispensing pharmacy. In contrast to the "pictorial" approach, the
functional label, containing the minimum of essential information, is recommended.
Shrank et al (2007; 2010) summarised how "evidence-based" container labels should look.
The proposed standard urged:
1). Use of explicit text to describe dosage/interval in instructions. The explicit frequency of
the drug use has to be provided (e.g. "take 4 tablets each day, 2 tablets in the morning, 2
tablets in the evening").
2). Use a recognizable visual aid to convey dosage/use instructions. A matrix has to be
provided, identifying time intervals ("2 tablets in 7-9am period, 2 tablets in 4-6pm period").
Australian study indicates that only about 40% of patient information was appropriate for their target
population (Baker, 1997). Also 40-60% of adult Americans had basic or below basic literacy skil s, limiting their
comprehension of the technical information on labels and product inserts (Cutil i, Bennett, 2009).
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
3). Organise labels in a patient-centred manner. Patient directed information must be
organised in a way that best reflects how most patients seek out and understand medicine
instructions. Patient-directed content should be at the top of the label, while provider-
directed content should be placed at the bottom. Drug name (generic) and specific dosage
should be placed in greatest prominence.
4). When possible, include the indication for use (e.g."take for diabetes"), including any
specific warnings (e.g. "avoid prolonged or excessive exposure to direct sunlight, while
taking this medication").
5). Simplify language, avoiding unfamiliar words and medical jargon.
6). Improve typography, use larger (12pt) sans serif font, numeric rather than alphabet
characters, bolding and highlighting (especially for patient content), and include only
horizontal text on the label.
As put by Shrank et al (ibid), the incorporation of each of the best-practice elements into
the label necessitated the minimum dimensions of the label to be 4.6' by 2.5' and the drug
container to be a 40 dram vial. No analysis has been conducted on whether the
pharmaceutical manufacturers will be required to use larger containers in order to be able
to use the best-practice label (which may change the chemical properties and shelf life of a
drug), or on whether a larger label will inevitably cover the drug brand name (with negative
implications for the marketing of drugs). However, to address this issue Shrank et al (ibid)
propose two-sided labels that would reduce the size of the label on each side and
presumably al ow patients/consumers to see the brand name of manufacturer: the front
side of the label would included essential patient (drug name and its quantity, dosage,
patient and doctor name and refil information) and provider content (pharmacy
name/logo, phone number and national drug code), whereas the back side would contain
appropriate warnings and instruction messages.
Corporate responses and legal ramifications
It is common among physicians and the general public to attribute adverse drug events and
medication errors (specifically those related to misidentification of drugs) to poor
labelling/packaging standards and practices of the pharmaceutical industry. Despite this,
the rarely mentioned fact is that pharmaceutical industry has a long history of voluntary
corporate responses to the problem of inadequate label ing/packaging.
Serious efforts to uniquely label medications began in 1965, when Eli Lilly voluntarily
introduced the Identicode System, imprinting an alphanumeric code on every solid dosage
form and thereby helping to reduce the cases of drug misidentification (Berman, 2004, p.
16). Since then bar-coding became part of the regulatory toolkit: the Section 510 of the US
Federal Food, Drug, and Cosmetic Act currently stipulates the inclusion on every medication
packaging (but not medications themselves) of the 3-part, 10-digit identifier, including
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
information about the vendor/label er, product (including drug strength, formulation and
dosage) and package size.
Likewise, the manufacturers of ophthalmologic drugs have over the year's standardised
labels (American Academy of Ophthalmology, 2000): brightly coloured bottle tops have
been used to help patients identify different eye drops. More recently the use of colour has
also been standardised: uniform colour-coding schemes were developed, taking into
account the medication, its side effects, the disease being treated and the risk of serious
complications (if a switch to other medication occurs).
Also, companies producing anaesthetics in the US, Canada, Australia and New Zealand have
developed a standardised colour-coded label system for labels for syringes of medications
drawn up for use in the operating room. The system applies not only for pre-packaged
medications, but also to the labels that are placed on syringes by the anaesthesiologists
themselves (Radhakrishna, 1999).
Similar voluntary responses also hold for drugs that may result in deadly outcomes, if
administered inappropriately. After numerous problems with potassium chloride for
injection (when concentrated potassium chloride was injected instead of 0.9% solution) the
conventional label ing "Must be diluted" was proposed and adopted by the industry
Overall there exists clear evidence that the pharmaceutical industry has been pre-emptive
as far as the risk of medication errors was concerned and cooperative when it came to
correcting inadequate packaging/labelling practices (numerous cases, when the industry
was wil ing to act upon the recommendations of the regulatory bodies).
As far as the legal liability of the pharmaceutical companies is concerned, it is common in
the media and in academic circles to attribute serious adverse drug events (including those
resulting in the death of a patient) to inadequate label ing/packaging. For instance, Orser et
al (2006) mention the omission of the generic name on a potentially lethal anaesthetic, a
violation of Canada's Food and Drugs Act that could have resulted in fatality. The enquiries
into the deaths of patients in the acute care setting from overdoses of anaesthetics also
point to the misidentification of drugs (Merry, Peck, 1995).
However, proving that a particular ADE is solely the fault of the pharmaceutical company
and consequently establishing the legal liability is not an easy task. As there exists no
mechanisms or procedures to track medication errors, fatal and near-fatal ADEs and serious
medication errors are typically considered as instances of medical malpractice. The issue
becomes particularly complicated in the ambulatory settings and community pharmacies
(when a manufacturer's label is over-labelled by the pharmacist or when a physician's
prescription is illegible) or in cases of patients in the aged care and high-risk groups (when
carers and health workers are involved).
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
Consequently two opposing legal doctrines gain prominence. The "learned intermediary
rule", established in 1965 after a pharmaceutical liability suit in the US (Sterling Drug Inc. v
Cornish) mandates the physician to communicate drug warnings (including those indicated
on the drug packaging) to the patient. A prescription drug manufacturer fulfils its legal
obligations to warn a patient by adequately warning the prescribing general practitioner
(Gemperli, 2000). In contrast, the more recent suits (MacDonald v Ortho Pharmaceutical
Corp in 1985 and particularly Perez v Wyeth Laboratories in 1999) re-evaluated "learned
intermediary rule", claiming that it depended heavily on unrealistic premises that the
patient-physician relationship is the focal point of all medical care and that pharmaceutical
companies are unable to communicate information about their products directly to
patients. While in Australia the path of legal development wil undoubtedly be different
from the US one, the Perez v Wyeth Laboratories case marks a turning point in the
definition of the industry's legal liability (Gemperli, ibid). Worldwide the pharmaceutical
industry is expected to participate more actively in warning the consumers and conveying
these warnings through improved labelling/packaging. However, the legal controversies as
to what constitutes an ‘adequate' drug label are likely to persist until exhaustive and full
government regulations are written.
Conclusion
From the foregoing it is clear that the problem of medication errors and ADEs caused by
inadequate packaging/label ing does exist and imposes substantial costs on the health
system. There is an adequate realization of the problem by the academic community and
regulators; and the pharmaceutical industry has been showing its willingness to act pre-
emptively and develop its own mechanisms to deal with the issue.
What needs to be remembered, however, it that the problem of medication safety (of
which the label ing issue is a constitutive part) is a systemic one, meaning that in the
majority of cases the ADE or fatality from the wrong use of medication is a culmination of a
chain of events with multiple parties responsible for an adverse outcome. It is also a
problem that has human, rather than a purely technical dimension. The latter means that in
the case of prescription medicines the majority of errors are caused by knowledge deficits
(lack of information about patient characteristics and history, about the drug effects),
performance setbacks (failure to follow established procedures, slips and memory lapses,
calculation errors) and communication breakdowns (between providers of the medication).
Indeed, as put by Phil ips et al (2001) over 65% of medication errors were attributed to
human factors, fol owed by 16% due to communication problems and another 16% due to
product problems (naming, labelling and packaging confusions).
Thus, an adequate response to the medication safety problem in general, and packaging
and labelling in particular, is likely to be systemic-organizational one, tackling the above
mentioned knowledge, performance, communication and product shortfal s, and including:
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
1). The improvement of health literacy of the ultimate consumers of the drug, and the
enhancement of the knowledge of medication errors by pharmacists and physicians;
2). The creation of an error-minimization environment at the pharmacy and hospital level,
involving in its turn the minimum reliance on human abilities and factors and the maximum
use of electronic prescription, recording and monitoring systems;
3). The creation of learning and a transparent organizational environment, preventing
medication error cover-ups and allowing for collective engagement in medication error
identification and prevention.
This does not mean, however, that the pharmaceutical industry will not play any role. By
ensuring the quality of labels (through elimination of labelling irregularities and ambiguities
mentioned in this paper; and reliance on evidence-based academic advice), the
pharmaceutical industry may play a "forcing function" (ISMP, 2002c), i.e. make it difficult or
impossible for medication error to occur, even when knowledge, organizational and
communication further down the drug supply chain are not up to the task.
Further research that relevant stakeholders (including the pharmaceutical industry) may
embark upon could include other aspects of the medication safety problem, such as the
proliferation of look-alike sound-alike drug names, "umbrella branding", as well as the
generic vs. proprietary names controversy.
References
ABC Radio National. Health Report. Label ing of Medication Dispensed by Pharmacists. 10
American Academy of Ophthalmology. Policy Statement: Color Codes for Topical Ocular
Medications. February, 2000.
Australian Institute of Health and Welfare. Australian Hospital Statistics, 1999-2000.
Aronson JK. Medication Errors: What They Are, How They Happen, and How to Avoid Them.
Quarterly Journal of Medicine 2009; 102, pp. 513-521.
Ashcroft DM, Quinlan P, Blenkinsopp A. Prospective Study of the Incidence, Nature and
Causes of Dispensing Errors in Community Pharmacies. Pharmacoepidemiology and Drug
Safety 2005; 14, pp. 327-332.
Australian Council for Safety and Quality in Health Care. Second National Report on Patient
Safety, Improving Medication Safety. Canberra, 2002.
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
Baker SJ. Who Can Read Consumer Product Information? Australian Journal of Hospital
Pharmacy 1997; 27, pp. 126-131.
Berman A. Reducing Medication Errors through Naming, Labeling, and Packaging. Journal
of Medical Systems 2004; Vol. 28, No. 1, pp. 9-29.
Beso A, Franklin BD, Barber N. The Frequency and Potential Causes of Dispensing Errors in a
Hospital Pharmacy. Pharmacy World and Science 2005; 27, pp. 182-190.
Carmona RH. "Be MedWise": The Surgeon General's Prescription for Safe Use of Over-the-
counter Medications. Available at
Cohen MR. Medication Errors. American Pharmacists Association Publication, 1999, 1st
Cohen MR. Medication Naming, Labeling and Packaging. American Journal of Health-
System Pharmacy 2002; 59 (9), pp. 876-877.
Cutilli CC, Bennet IM. Understanding the Health Literacy of America: Results of the National
Assessment of Adult Literacy. Orthopaedic Nursing 2009; 28 (1), pp. 27-32.
Dowse R, Ehlers M. Medicine Labels Incorporating Pictograms: Do They Influence
Understanding and Adherence? Patient Education and Counselling 2005; 58, pp. 63-70.
Edgar TA, Lee DS, Cousins DD. Experience with a National Medication Error Reporting
Program. American Journal of Hospital Pharmacy 1994; 51, pp. 1335-1338.
Flynn EA, Barker KN, Carnahan BJ. National Observational Study of Prescription Dispensing
Accuracy and Safety in 50 Pharmacies. Journal of American Pharmacy Association 2003; 43,
Franklin BD, O'Grady K. Dispensing Errors in Community Pharmacy: Frequency, Clinical
Significance and Potential Impact of Authentication at the Point of Dispensing. International
Journal of Pharmacy Practice 2007; 15 (4), pp. 273-281.
Gemperli MP. Rethinking the Role of the Learned Intermediary: the Effect of Direct-to-
Consumer Advertising on Litigation. Journal of the American Medical Association 2000; 284,
Guchelaar H-J, Kalmeijer MD, Jansen MEP. Medication Error due to Ambiguous Label ing of
a Commercial Product. Pharmacy World and Science 2004; 26 (1), pp. 10-11.
ISMP Medication Safety Alert, Vol 7, No. 7, 2002a.
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
ISMP Medication Safety Alert, Vol 7, No. 9, 2002b.
ISMP Medication Safety Alert, Vol. 7, No. 22, 2002c.
Kohn LT, Corrigan JM, Donaldson NS (eds.) To Err is Human: Building a Safer Health System.
A Report from the Committee on Quality of Healthcare in America. Institute of Medicine,
National Academy of Sciences. Washington, DC, 1999.
Mansoor LE, Dowse R. Effect of Pictograms on Readability of Patient Information Materials.
The Annals of Pharmacotherapy 2003; 37, pp. 1003-1009.
McKenzie A. Medicines in People's Lives: Creating Opportunity. National Medicines
Symposium, Melbourne, 2010.
Merry AF, Peck DJ. Anaesthetists, Errors in Drug Administration and the Law. New Zealand
Medical Journal 1995; 108, pp. 185-187.
Miller GC, Britt HC, Valenti L. Adverse Drug Events in General Practice Patients in Australia.
Medical Journal of Australia 2006; 184, pp. 321-324.
Morrow DG, Leirer VO, Andrassy JM. Using Icons to Convey Medication Schedule
Information. Applied Ergonomics 1996; 27, pp. 267-275.
National Quality Forum. Improving Use of Prescription Medications: A National Action Plan.
Washington, DC: National Quality Forum, 2005.
Orser BA, Dionee C, Hyland S. Drug Safety in Canada: 2 Steps Forward, 1 Step Back.
Canadian Medical Association Journal 2006; 174 (1), pp. 66-67.
Phillips J, Beam S, Brinker A, Holquist C, Honig P, Lee L, Parner C. Retrospective Analysis of
Mortalities Associated with Medication Errors. American Journal of Health-System
Pharmacy 2001; 58 (19), pp. 1835-1841.
Radhakrishna S. Syringe Labels in Anaesthetic Induction Rooms. Anaesthesia 1999; 54 (10),
Roughead EE, Barratt JD, Gilbert AL. Medication-related Problems Commonly Occurring in
an Australian Community Setting. Pharmacoepidemiology and Drug Safety 2004; 13, pp. 83-
Roughead EE, Semple SJ. Medication Safety in Acute Care in Australia: Where Are We Now?
Part I: A Review of the Extent and Causes of Medication Problems 2002-2008, 2009; 6 (18).
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
Sansgiry SS, Cady PS, Adamcik BA. Consumer Comprehension of Information on Over-the-
counter Medication Labels: Effects of Picture Superiority and Individual Differences Based on
Age. Journal of Pharmaceutical Marketing and Management 1997; 11, pp. 63-76.
Shrank WH, Avorn J, Rolon C, Shekelle P. The Effect of the Content and Format of
Prescription Drug Labels on Readability, Understanding and Medication Use: A Systemic
Review. The Annals of Pharmacotherapy 2007; 41 (5), pp. 783-801.
Shrank WH, Agnew-Blais J, Choudry N, Wolf MS, Kesselheim A, Avorn JL, Shekelle P. The
Variability and Poor Quality of Medication Container Labels: A Prescription for Confusion.
Archives of Internal Medicine 2007; 167 (16), pp. 1760-1765.
Shrank WH, Parker R, Davis T, Pandit AU, Knox JP, Moraras P, Rademaker A, Wolf MS.
Rationale and Design of a Randomised Trial to Evaluate an Evidence-based Prescription
Drug Label on Actual Medication Use. Contemporary Clinical Trials 2010; 31, pp. 564-571.
Sojourner RJ, Wogalter MS. The Influence of Pictorials on the Comprehension and Recall of
Pharmaceutical Safety and Warning Information. International Journal of Cognitive
Ergonomics 1998; 2, pp. 93-106.
Thornton PD, Simon S, Mathew TH. Towards Safer Drug Prescribing, Dispensing and
Administration in Hospitals. Journal of Quality in Clinical Practice 1999; 19, pp. 41-45.
United States Pharmacopeia (USP). For Regulators and Standard Setters. USP Quality
Review No. 62. May 1998.
United States Pharmacopeia. Ophthalmic Products Similar Packaging/Labeling Initiates
Changes. Practitioners' Reporting News, May 8, 2002.
Wolf MS, Shrank WH, Choudry NK, Agnew-Blais J, Parker RM, Shekelle P. Variability in
Pharmacy Interpretations of Physician Prescriptions. Medical Care 2009; 47 (3), pp. 370-
Secretariat: PO Box 7036 Canberra BC ACT 2610
ph: 02-6270 1888 fax: 02-6270 1800
Source: http://medicinespartnership.com.au/files/2013/02/20110524-dis-Packaging-and-labelling-of-pharmaceuticals-and-consumer-safety-MA-lit-review-MPA-version.pdf
• Editorial June 2013• 25th Pezcoller Symposium: Abstracts of oral presentations Abstracts of posters• Call for 2014 International Award For Cancer Research Pezcoller Foundation World It's with great pleasure that I can report that the re- ler Symposium entitled "Metabolism and Tumorigene- cipient of the 2013 Pezcoller Foundation-AACR Interna-
Transepithelial Corneal Cross-Linking With Vitamin E-Enhanced Riboflavin Solution and Abbreviated, Low-Dose UV-A: 24-Month Clinical Outcomes Ciro Caruso, MD,* Carmine Ostacolo, PharmD,† Robert L. Epstein, MD,‡ Gaetano Barbaro, EngD,§ Salvatore Troisi, MD,¶ and Decio Capobianco, MDk cell count. No corneal abrasions occurred, and no bandage contact Purpose: To report the clinical outcomes with 24-month follow-up